***UPDATE SCD 2025**

CONTEMP-ICD

Elijah R Behr

Risk of SCD: Primary prevention

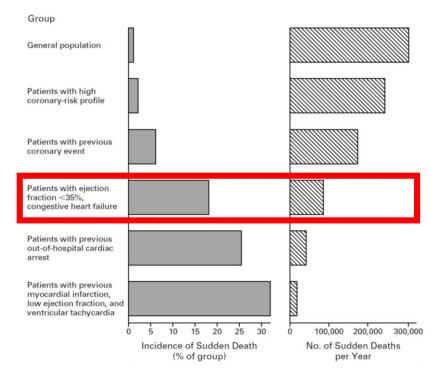


Figure 1. The Incidence of Sudden Death in Specific Populations and the Annual Numbers of Sudden Deaths in Those Populations...

Most of the deaths occur in the larger, lower-risk subgroups. Modified from Myerburg et al.¹⁰ with the permission of the publisher...

Risk stratification and primary prevention of SCD in chronic CAD

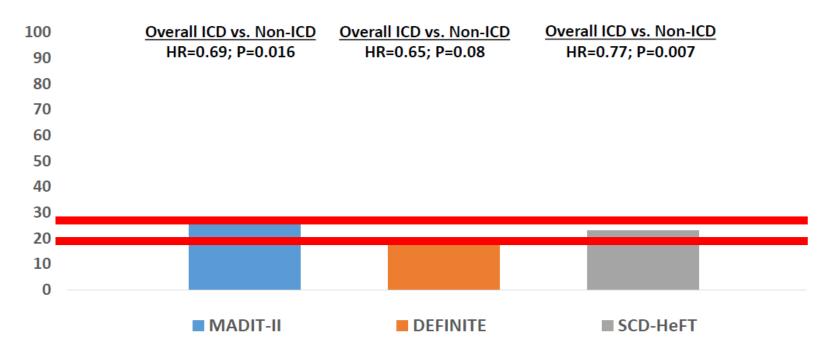
	Class	Leve I
ICD therapy should be considered in		
patients with CAD, NYHA class I, and LVEF	lla	В
≤30% despite ≥3 months of OMT.		

SCD-HEFT

ICD implantation for Primary Prevention of SCD

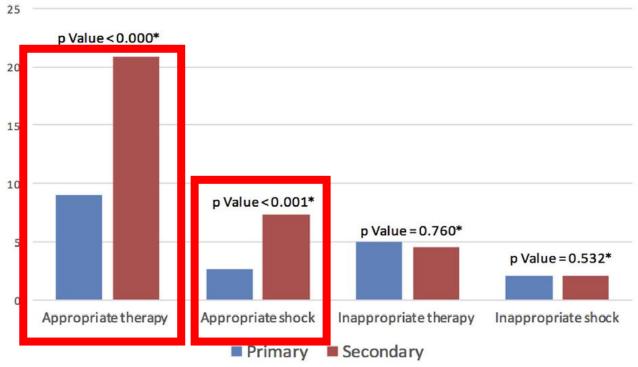
Most have LVEF ≤ 35% and HF symptoms

However, current recommendations in patients with both ischaemic and non-ischaemic cardiomyopathy originate from clinical trials carried out approximately two decades ago


Are they still applicable in the current era of contemporary HF management?

CAVEAT: Cardiac Resynchronisation Therapy

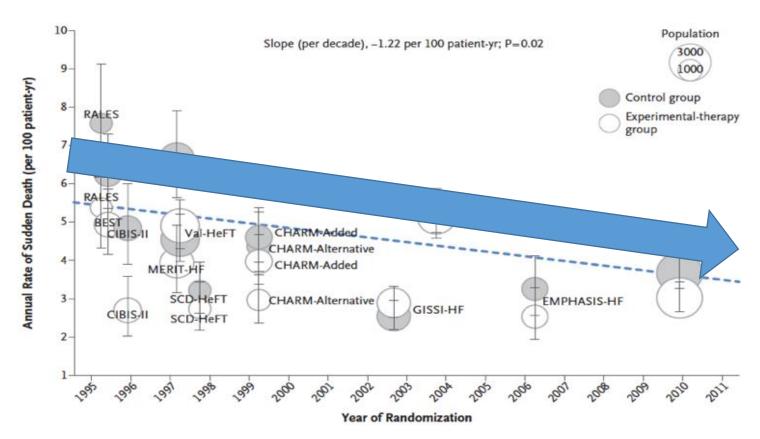
Recommendations	Class ^a	Level ^b
When an ICD is indicated, it is recommended to evaluate whether the patient could benefit from CRT-defibrillator. 367	1	С



Rate of Appropriate ICD Therapy in Landmark Primary Prevention Trials

Background of standard GDMT

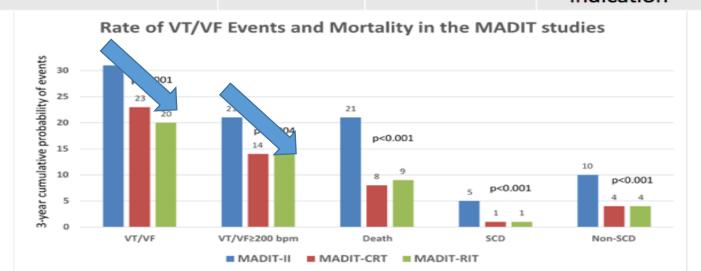
Real world rates of ICD therapy: 30 month F-U


Background of standard GDMT

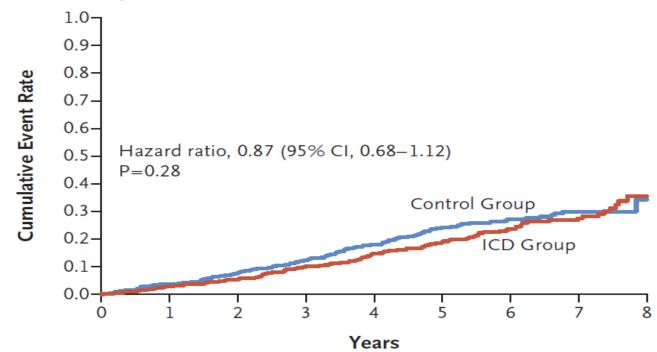
Rates of ICD therapy: Real world vs Historical studies

Trial	Year	Average duration (mo)	Average annual rate of appropriate shock, %	1-Year all-cause mortality, %	2-Year all-cause mortality, %
MADIT II	2002	24	17	9	16
SCD-HeFT	2005	45.5	5	6	11.6
PREPARE	2008	12	5.4	4.9	NA
MADIT-RIT	2012	16	3	3	10
ICD Registry	2014	20	1	6	11

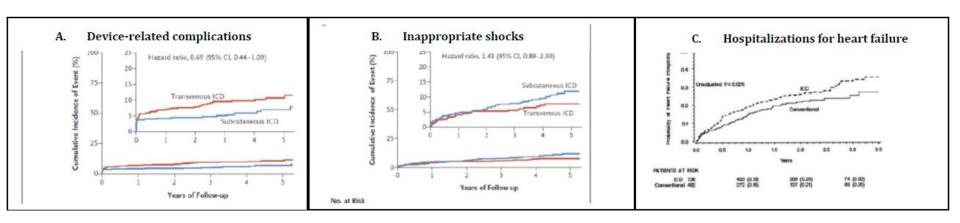
Background of standard GDMT


Background: Declining rate of SCD

N Engl J Med 2017; 377:41-51 DOI: 10.1056/NEJMoa1609758

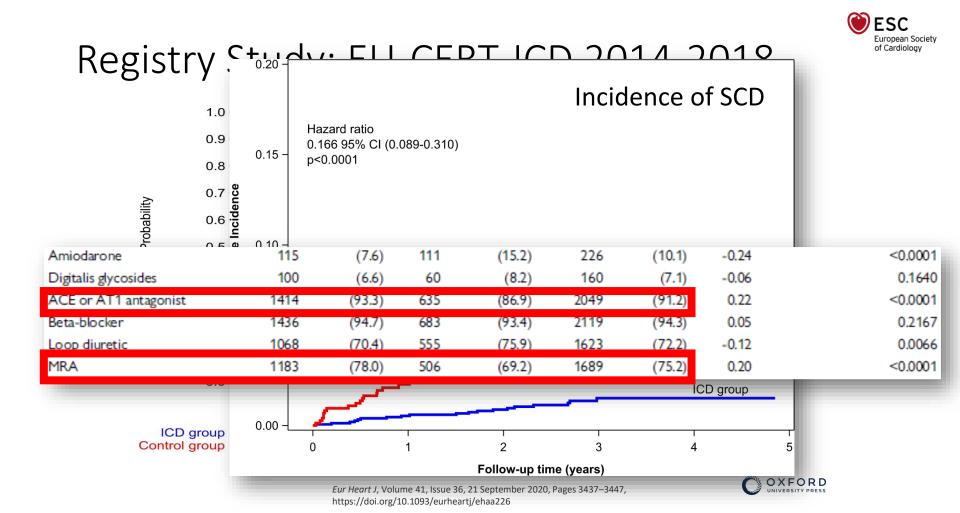

Declining rate of VT/VF in the MADIT-Trials

Trial	MADIT-II	MADIT-CRT	MADIT-RIT
N	746	1820	1500
Enrollment years	1997-2001	2004-2008	2009-2011
Investigated device	ICD	CRT-D vs. ICD	CRT-D + ICD
Inclusion criteria	LVEF ≤ 30% Prior MI	LVEF ≤ 30% ICM + NICM NYHA I-II	LVEF ≤ 35% ICM + NICM ICD or CRT-D indication



DANISH TRIAL

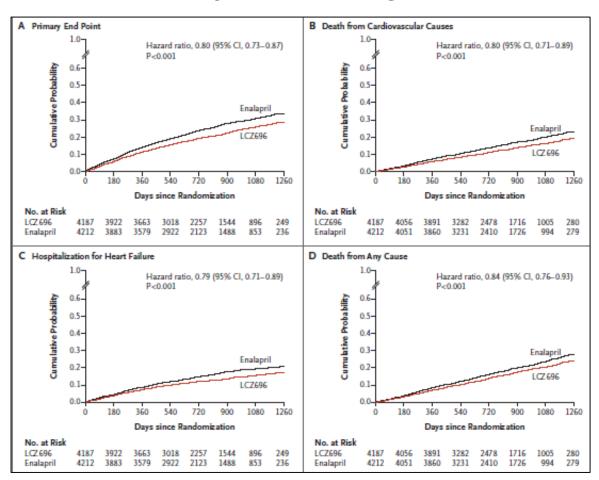
A Death from Any Cause


ICD-Related CV major adverse events

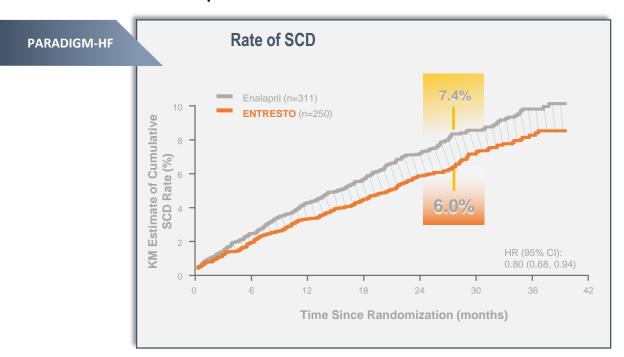
PRAETORIAN Study: 3 year rates for TV-ICD:

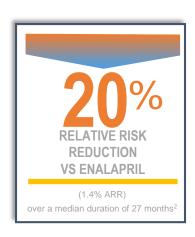
A: 10% Device related complications B: 8% Inappropriate shock rates

MADIT II: C: 39% increased risk for HF admission


Contemporary Management in HFrEF

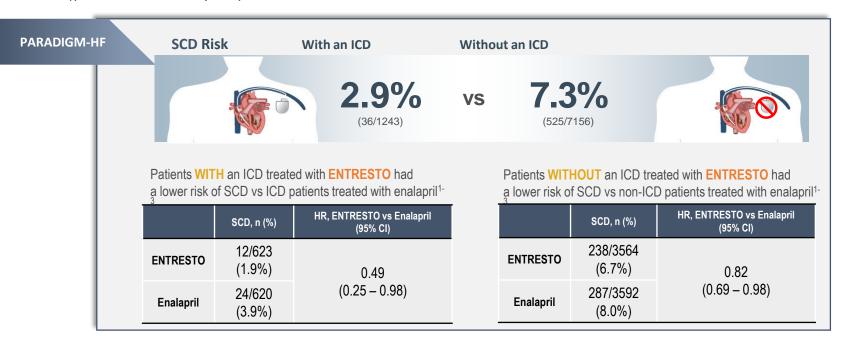
Angiotensin receptor/Neprilysin inhibitor - ARNi


SGLT2-Inhibitors


Optimization of GDMT doses

ARNI for HFrEF: PARADIGM-HF

ENTRESTO reduced risk of SCD* by 20% compared to enalapril (post-hoc analysis)

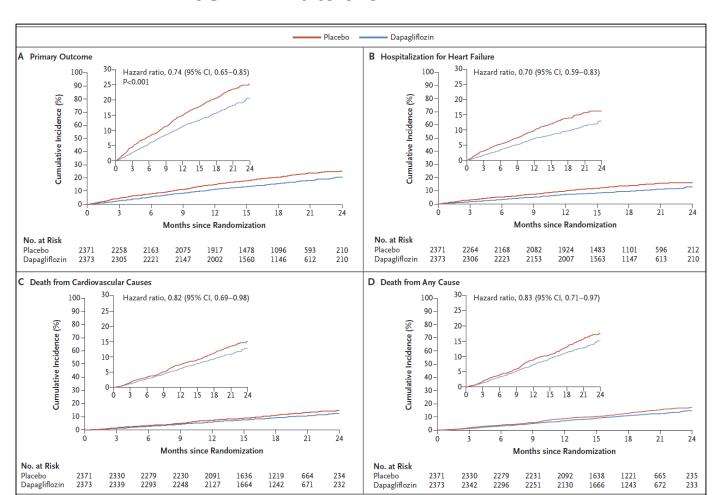


^{*}Risk reduction of SCD as a cause of death was not a prespecified analysis of PARADIGM-HF and patients were not randomized by ICD status.

Desai AS, et al. *Eur Heart J.* 2015;36(30):1990-1997.

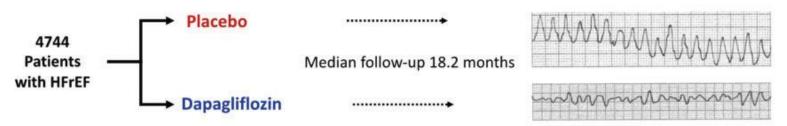
Risk of SCD in absence or presence of ICDs^{1,*}

(post-hoc analysis)


^{*}Risk reduction of SCD as a cause of death was not a prespecified analysis of PARADIGM-HF and patients were not randomized by ICD status.

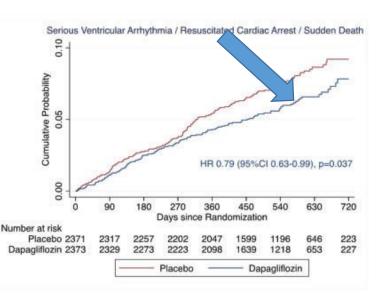
^{1.} Desai AS, et al. Eur Heart J. 2015;36(30):1990-1997.

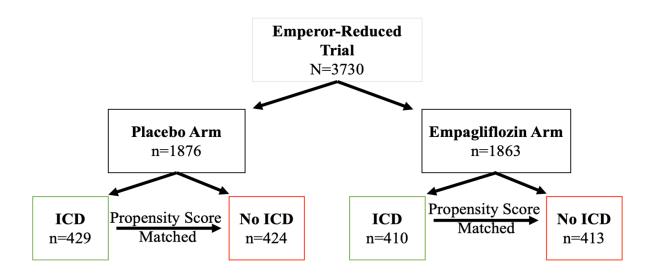
^{2.} Data on File. CLCZ696B2314. SCD by ICD use and treatment group, Novartis Pharmaceutical Corp; April, 2018.


^{3.} McMurray JJ, et al. N Engl J Med. 2014;371(11):993-1004.

SGLT2 Inhibitors for HFrEF: DAPA-HF

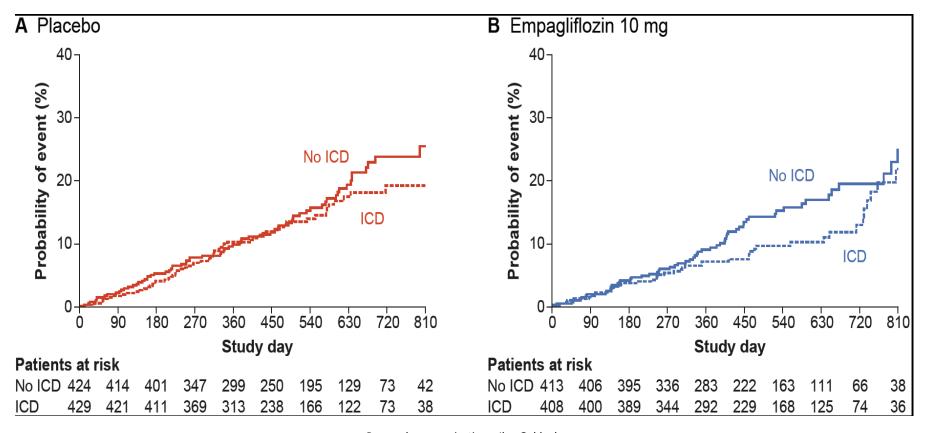
Effect of SGLT2 Inhibitors on the risk of SCD: DAPA-HF


Investigator Reports (Serious Adverse Events)


Backward stepwise logistic regression multivariable model to predict any serious ventricular arrhythmia, resuscitated cardiac arrest or sudden death

Predictor Variable*	Odds Ratio (95% CI)	p Value**	χ2	
Log-transformed NT-proBNP (per 1 unit increase)	1.54 (1.34 – 1.77)	<0.001	36.0	
Previous Ventricular Arrhythmia	1.93 (1.41 - 2.64)	<0.001	16.8	
LVEF (per 5% increase)	0.86 (0.78 - 0.94)	0.001	11.9	
Systolic BP (per 10mmHg)	0.88 (0.81 - 0.96)	0.004	8.1	
Previous MI	1.42 (1.11-1.82)	0.005	7.8	
Sex- male	1.53 (1.10 - 2.12)	0.012	6.3	
BMI (per 1 kg/m² increase)	1.03 (1.00 - 1.05)	0.020	5.4	
Sodium (per 1 mmol/L increase)	0.96 (0.92 - 0.99)	0.039	4.3	
Non-white race	0.85 (0.72 - 0.99)	0.038	4.3	
Dapagliflozin	0.80 (0.63 - 1.02)	0.067	3.4	
Cardiac Resynchronization Therapy	0.64 (0.39 - 1.04)	0.070	3.3	
Previous HF hospitalization	0.99 (0.78 - 1.27)	0.985	0.0	

^{*}Randomized treatment and history of heart failure hospitalization were fixed factors in the model. **The p-value threshold was set at p<0.1


ICD Benefit in EMPEROR Reduced

Variables Used for Propensity Matching

Age, sex, New York Heart Association functional class, cause of cardiomyopathy (ischemic/non-ischemic), left ventricular ejection fraction, estimated glomerular filtration rate, geographic region, mineralocorticoid receptor antagonist use

ICD Benefit in EMPEROR Reduced

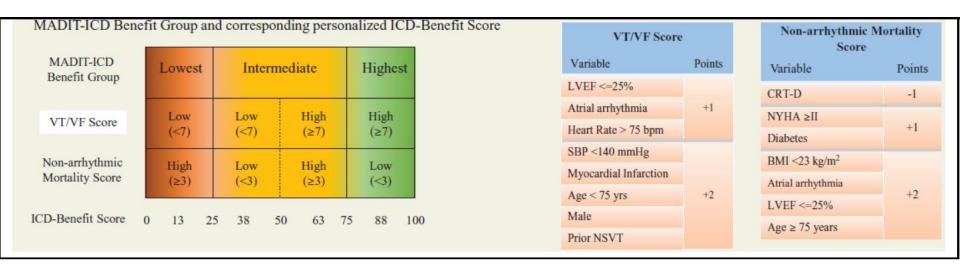
CONTEMP-ICD Study Design and Hypothesis

Prospective, multicentre, open-label, randomized-controlled trial

Eligible for a primary prevention ICD (exclude CRT) but have a higher predicted risk of non-arrhythmic mortality vs. SCD.

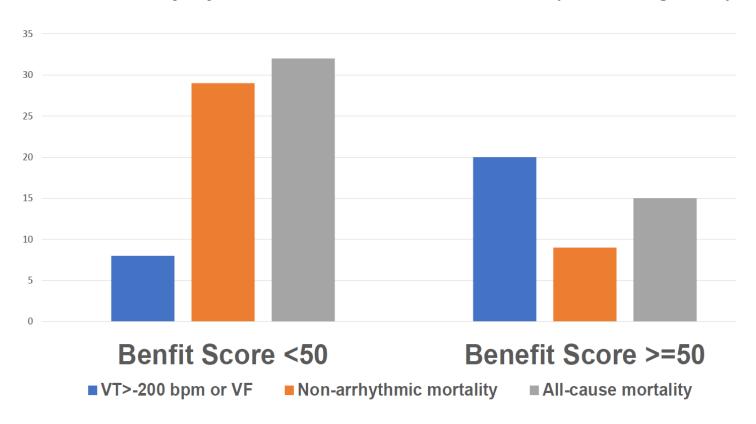
Non-ICD vs. ICD treatment arms

Ethical issues associated with randomization to Non-ICD in clinical trials


Consistent GDMT optimization:

GDMT Score

Exclusion of patients who are at a high risk for the development of arrhythmic events:


MADIT-ICD Benefit Score

MADIT-ICD BENEFIT SCORE

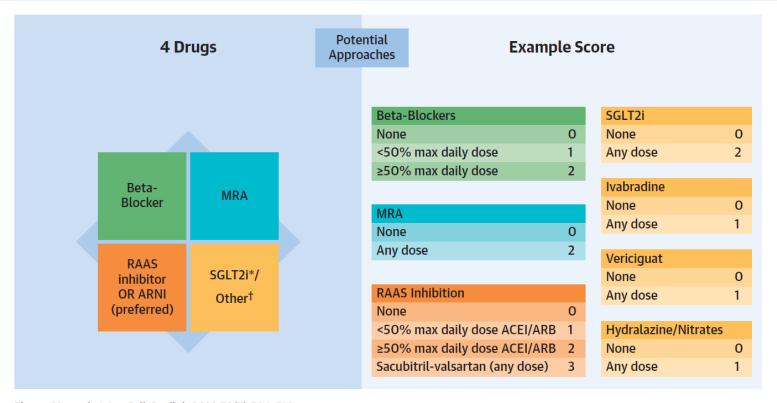
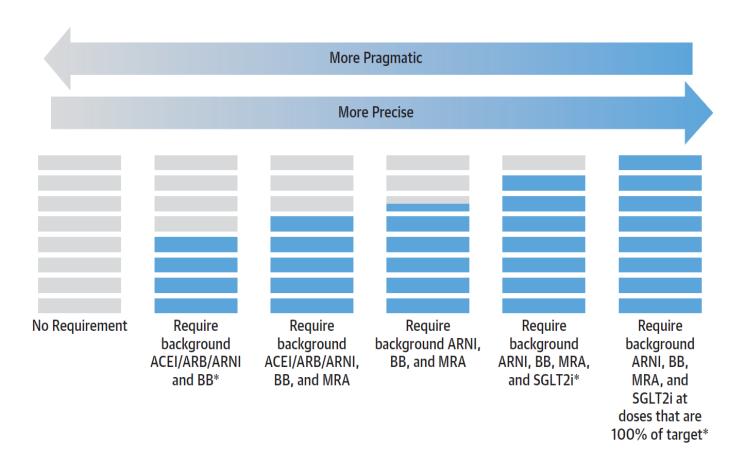

https://is.gd/madit

Figure 5: Three-year rates of VTA, non-arrhythmic death, and all-cause mortality by the MADIT-ICD Benefit Score (excluding CRT)


GDMT SCORE

CENTRAL ILLUSTRATION Potential Approaches to Background Drug Therapy for Heart Failure Patients

Fiuzat, M. et al. J Am Coll Cardiol. 2022;79(5):504-510.

GDMT SCORE

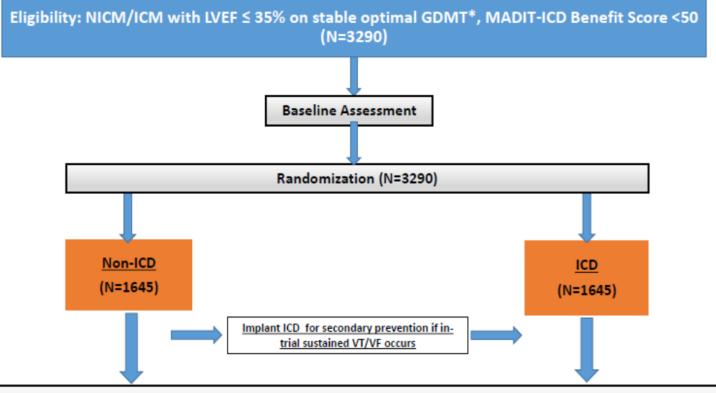
Primary Specific Aim

Compare the risk of all-cause mortality of Non-ICD vs. ICD management in HFrEF patients who have a non-arrhythmic mortality risk that exceeds the risk of VTA per the MADIT-ICD Benefit Score

We hypothesize that in HFrEF patients at a lower arrhythmic risk medical management without an ICD is non-inferior to prophylactic ICD placement for the primary endpoint of all-cause mortality.

Secondary Aims

<u>Specific Aim 2:</u> Evaluate whether Non-ICD vs. ICD is associated with improved survival free of major CV events in patients with HFrEF who are at a lower arrhythmic risk


We hypothesize that Non-ICD management is associated with improved survival free of major CV events requiring hospitalization compared with prophylactic ICD implant.

<u>Specific Aim 3:</u> Assess the healthcare utilization (HCU) and quality of life (QoL) implications of Non-ICD vs. ICD management approaches in HFrEF patients with a lower predicted arrhythmic risk

We hypothesize that the reduction in major CV events associated with Non-ICD management approach will translate into lower HCU (defined in section C.1.2.) and improved QoL (assessed through the Kansas City Cardiomyopathy Questionnaire [KCCQ], EuroQol-5 Dimension (EQ-5D), Patient-reported Outcomes [PRO]).

<u>Specific Aim 4:</u> Determine the effect of Non-ICD vs. ICD management on all-cause mortality in prespecified subgroups

We hypothesize that, in HFrEF patients who are at a lower arrhythmic risk, Non-ICD vs. ICD is consistently non-inferior with respect to the primary endpoint of all-cause mortality in prespecified subgroups (including age, sex, race/ethnicity, ICM/NICM status, Charlson comorbidity index, and the use of novel GDMT treatment).

Virtual follow-up until study closure (average 3.0 years)

Primary Endpoint: All-cause mortality

Secondary endpoint: Major CV adverse events. QoL, PRO, healthcare utilization

<u>Tertiary endpoints:</u> Device complications, ICD therapies (inappropriate and appropriate), LVEF, HF events, cause-specific death

*Optimal GDMT is defined in inclusion/exclusion criteria (Table 3)

Eligibility Criteria

Inclusion criteria:	Exclusion criteria:
Age ≥ 18 years (no upper limit)	Existing ICD/CRT-D
Class I or IIa indication for a primary prevention ICD ¹⁵ : Ischemic or non-ischemic cardiomyopathy and NYHA Class ≥ II if most recent LVEF is ≤ 35% OR ischemic cardiomyopathy with NYHA Class I if most recent LVEF is ≤ 30%	Planned CRT-P or CRT-D implant for any indications including Class I or IIa indication for CRT including: Presence of left bundle branch block (LBBB) with QRS ≥ 120 msec OR QRS duration ≥ 150 msec regardless of QRS morphology OR decision for CRT implant by EP provider for other indications
Most recent LVEF (%) per cardiac imaging* obtained at any time prior to enrollment after being stable on optimal GDMT** for at least one month	Acute MI within the past 3 calendar months
Optimal GDMT for at least one calendar month prior to last LVEF imaging is prespecified as one of the following: ➤ Receiving all 4 therapies (betablockers, ARNI/ARB/ACE, MRA, and SGLT2i) Or ➤ GDMT Score ≥ 6 (per Figure 7)	Chronic renal failure requiring hemodialysis
MADIT-ICD Benefit Score < 50 (per Figure 4)	Coronary revascularization within the past 3 calendar months
	History of sustained VT or VF
	Known genetic cause of cardiomyopathy
	Life expectancy < 1 year
	Unable or unwilling to follow study protocol
	Inability to consent

criterion #4 below.

Outcome measures

Primary or Secondary	Name of Outcome	Specific measure to be used	Timepoints	Estimated power
Primary	All-cause mortality	All-cause mortality	End of follow-up (average 3.0-years)	90% (Cox model) (NI margin = 1.20)*
Secondary	Major adverse CV events requiring hospitalization*	First occurrence of HF hospitalizations, stroke, MI, device-related major complications or inappropriate ICD shocks requiring admission**	End of follow-up (average 3.0-years)	>99% (Cox model)‡
Secondary	Healthcare utilization	All-cause hospital admissions, ED visits, planned and unplanned clinic visits	End of follow-up (average 3.0-years)	>99% (Fisher exact test)***
Secondary	Quality of life	Kansas City Cardiomyopathy Questionnaire [KCCQ], Patient-reported Outcomes [PRO],¶ EuroQol-5 Dimension (EQ-5D)	One-year	>99.9% (Fisher's exact test) +

STATISTICAL DESIGN AND POWER

Noninferiority two-arm design for primary endpoint of all-cause mortality, comparing ICD+CRT-D & no-ICD+CRT-D

Letting HR = Hazard ratio [No-ICD+CRT-D / ICD+CRT-D], study is powered for the following null and alternative hypotheses:

$$H_0:HR \ge 1.20 \text{ vs } H_a:HR < 1.20$$
 (i.e., No-ICD+CRT-D is inferior to ICD+CRT-D, vs. not)

Margin (i.e., 1.20 on HR scale) selected based on previous trial data: all ICD trials show a mortality reduction of >25% for prophylactic ICD implantation vs. Non-ICD therapy

Proposed trial sample size: 3290 patients from ~115 sites

Study Team and Partners

<u>Funding support:</u> Patient-Centered Outcome Research Institute (PCORI)

Sponsor: University of Rochester

Steering Committee:

Leading HF and EP specialists

Engagement Committee:

Patient partners and stakeholders

Pharmacologic counseling: Dr. Kathrine DiPalo

Endorsement from:

Heart Rhythm Society

European Heart Rhythm Association

Heart Failure Society of America

European Heart Failure Society

American Heart Association

American College of Cardiology

Canadian Heart Failure and Heart Rhythm Societies

Heart Rhythm

The Official Journal of the Heart Rhythm Society, The Cardiac Electrophysiology Society and The Pediatric & Congenital Electrophysiology Society

Contemporary Review

Reassessing the need for primary prevention implantable cardioverter-defibrillators in contemporary patients with heart failure

Ilan Goldenberg, MD, ¹ Justin Ezekowitz, MBBCh, MSc, ² Christine Albert, MD, MPH, FHRS, ³ Jeffrey D. Alexis, MD, ⁴ Lisa Anderson, MD, ⁵ Elijah R. Behr, MD, ⁵ James Daubert, MD, FHRS, ⁶ Katherine E. Di Palo, PharmD, MBA, MS, ⁷ Kenneth A. Ellenbogen, MD, FHRS, ⁸ Dillon J. Dzikowicz, PhD, Eileen Hsich, MD, ⁹ David T. Huang, MD, FHRS, ⁴ James L. Januzzi, MD, ¹⁰ Valentina Kutyifa, MD, PhD, FHRS, ¹ Anuradha Lala, MD, ¹¹ Anekwe Onwuanyi, MD, ¹² Ileana L. Piña, MD, MPH, ¹³ Roopinder K. Sandhu, MD, MPH, FHRS, ¹⁴ Samuel Sears, PhD, ¹⁵ Jakub Sroubek, MD, FHRS, ⁹ Robert Strawderman, ScD, ¹⁶ Wojciech Zareba, MD, PhD, ¹ Javed Butler, MD, MPH, ¹⁷

Trial Designs

Review Articles

Reassessing the need for primary prevention implantable cardioverter-defibrillators in contemporary patients with heart failure

llan Goldenberg, MD¹ Justin Ezekowitz, MBBCh, MSc² Christine Albert, MD, MPH, FHRS³ Jeffrey D. Alexis, MD⁴ Lisa Anderson, MD⁵ Elijah R. Behr, MD⁵ James Daubert, MD, FHRS⁶ Katherine E. Di Palo, PharmD, MBA, MS⁷ Kenneth A. Ellenbogen, MD, FHRS⁸ Dillon J. Dzikowicz, PhD¹ Eileen Hsich, MD⁹ David T. Huang, MD, FHRS⁴ James L. Januzzi, MD¹⁰ Valentina Kutyifa, MD, PhD, FHRS¹ Anuradha Lala, MD¹¹ Anekwe Onwuanyi, MD¹² Ileana L. Piña, MD, MPH¹³ Roopinder K. Sandhu, MD, MPH, FHRS¹⁴ Samuel Sears, PhD¹⁵ Jakub Sroubek, MD, FHRS⁹ Robert Strawderman, ScD¹⁶ Wojciech Zareba, MD, PhD¹ and Javed Butler, MD, MPH¹⁷

Rationale and design of the comparative effectiveness of ICD vs non-ICD therapy in contemporary heart failure patients at a low risk for arrhythmic death (CONTEMP-ICD) trial

Ilan Goldenberg, MD ^{a,g,i,q}, Wojciech Zareba, MD, PhD ^a, Justin A. Ezekowitz, MBBCh, MSc ^b, Christine Albert, MD, MPH ^c, Jeffrey D. Alexis, MD ^d, Lisa Anderson, MD ^c, Elijah R Behr, MD ^c, James Daubert, MD ^f, Katherine E. Di Palo, PharmD, MBA, MS ^g, Kenneth A. Ellenbogen, MD ^h, Dillon J. Dzikowicz, PhD ^a, Joseph M. Harrington, MA ^a, Eileen Hsich, MD ^f, David T. Huang, MD ^d, James L. Januzzi, MD ^f, Anas Jawaid, MD ^g, Valentina Kutyifa, MD, PhD ^a, Anuradha Lala-Trindade, MD ^k, Alex Nakonechnyi, PhD ^a, Anekwe Onwuanyi, MD ^f, Ileana L. Piña, MD, MPH ^m, Roopinder K. Sandhu, MD, MPH ^g, Samuel Sears, PhD ^g, Jakub Sroubek, MD ^f, Tina Baykaner, MD ^p, Robert Strawderman, ScD ^g, Christopher Beck, PhD ^q, and Javed Butler, MD, MPH ^f

Clinical Implications

Findings from the proposed study will result in a paradigm change in HFrEF management, shifting healthcare resources from unnecessary routine prophylactic ICD placement to more appropriate HF management that actively incorporates pharmacologic and non-pharmacologic management with personalized selection for primary device therapy.

If the trial confirms the hypothesis, it is expected that approximately one half of HFrEF patients who are currently referred for prophylactic ICD placement will no longer be indicated for a device.