STEREOTACTIC RADIOABLATION FOR VT IS IT READY FOR PRIME TIME?

Katja Zeppenfeld

Willem Einthoven Center for cardiac arrhythmia

research and management

www.WECAM.care

Complete elimination of the target? Trials evaluation STAR for VT 2016-2023 (10 trials, 82 patients)

62% ICM, 38% NICM, median LVEF 21%-38%

One-year survival

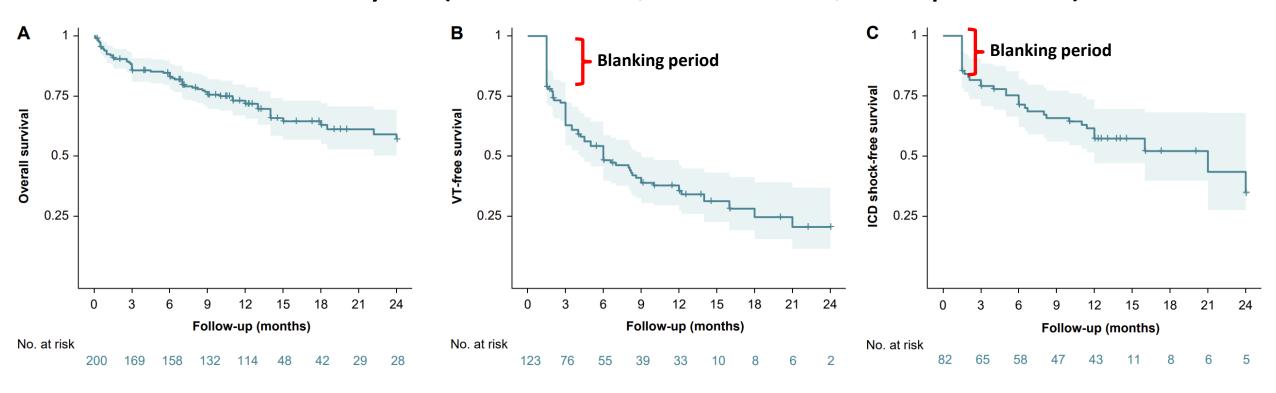
Study	Cases	Total	Proportion	95% C.I.	
Robinson et al. (2019)	14	19	0.74	[0.49; 0.91]	
Gianni et al. (2020)	3	5	0.60	[0.15; 0.95]	
Carbucicchio et al. (2021)	3	7	0.43	[0.10; 0.82]	
Molon et al. (2022)	5	6	0.83	[0.36; 1.00]	
Chang et al. (2022)	5	6	0.83	[0.36; 1.00]	
Krug et al. (2023)	4	5	0.80	[0.28; 0.99]	-
Miszczyk et al. (2023)	9	11	0.82	[0.48; 0.98]	
van der Ree et al. (2023)	4	6	0.67	[0.22; 0.96]	
Amino et al. (2023)	3	3	1.00	[0.29; 1.00]	
Arkles et al. (2023)	10	14	0.71	[0.42; 0.92]	
Random effects model		82	0.73	[0.61; 0.83]	
Heterogeneity: $Q = 4.45$ ($p = 0$.	9)				
				(0 0.2 0.4 0.6 0.8 1
					One-year overall survival rate

One-year (treated) VT recurrence free-survival

Study	Cases	Total	Proportion	95% C.I.					
Robinson et al. (2019)	2	17	0.12	[0.01; 0.36] -		_			
Gianni et al. (2020)	0	5	0.00	[0.00; 0.52]	:				
Carbucicchio et al. (2021)	0	7	0.00	[0.00; 0.41]	<u> </u>				
Molon et al. (2022)	3	6	0.50	[0.12; 0.88]	-:	-	-		
Krug et al. (2023)	3	5	0.60	[0.15; 0.95]	<u> </u>		-		_
Miszczyk et al. (2023)	2	11	0.18	[0.02; 0.52] -	-				
van der Ree et al. (2023)	1	6	0.17	[0.00; 0.64] -	-				
Amino et al. (2023)	2	3	0.67	[0.09; 0.99]	:		•		_
Random effects model Heterogeneity: Q = 8.14 (p = 0.	3)	60	0.21	[0.08; 0.46]			1		\neg
				0	0.2	0.4	0.6	8.0	1
				One-	-year re	curence	e-free	surviv	al rate

Efficacy of STAR Meta-analysis (2017-2024, 21 studies, 191 patients)

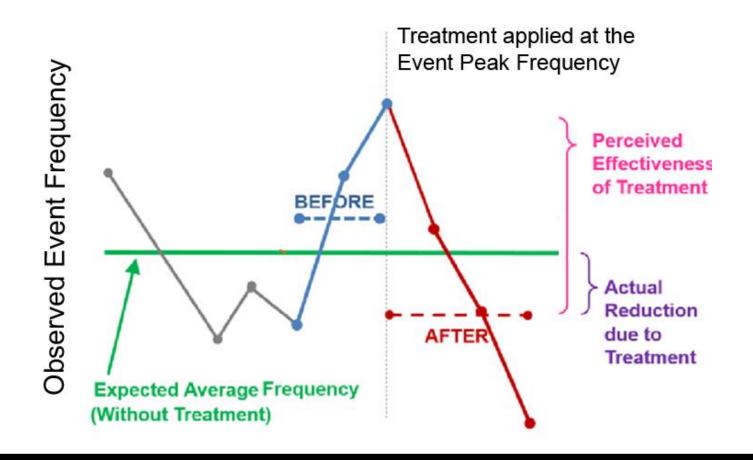
52% ICM, average NYHA 2.6, mean LVEF 30.9±12.9%, median follow-up 5.8-28 months, blanking period ≈6 weeks


A VT episodes

		Post 9	SBRT Pr	e SBRT		Rate ratio	Rate	ratio	
Study or subgroup	log(rate ratio)	SE	Total	Total	Weight	IV, random, 95% CI	IV, randor	n, 95% CI	
01. Cuculich P. 2017	-8.526	0.5	4	5	4.1%	0.00 (0.00, 0.00)	(
02. Robinson C. 2019	-2.486	0.098	16	17	4.9%	0.08 (0.07, 0.10)	~		
03. Neuwirth R. 2019	-2.182	0.098	10	10	4.9%	0.11 (0.09, 0.14)	~		
04. Lloyd M. 2020, Wight J. 2022	-1.166	0.056	8	10	4.9%	0.31 (0.28, 0.35)	*		
05. Gianni C. 2020	0.233	0.083	5	5	4.9%	1.26 (1.07, 1.49)		~	
06. Ho L. 2021	-2.842	0.233	5	6	4.7%	0.06 (0.04, 0.09)			
07. Yugo D. 2021	-4.97	0.583	2	3	3.9%	0.01 (0.00, 0.02)			10 fold roduction in
08. Chin R. 2021	-1.044	0.082	7	8	4.9%	0.35 (0.30, 0.41)	-		10-fold reduction in
09. Ho G. 2021	-2.349	0.12	5	6	4.9%	0.10 (0.08, 0.12)	-		
10. Carbucicchio C. 2021	-0.96	0.136	6	7	4.9%	0.38 (0.29, 0.50)	-		VT anicedes and ICD sheets
11. Lee J. 2021	-1.249	0.15	5	7	4.9%	0.29 (0.21, 0.38)			VT episodes and ICD shocks
12. Qian P. 2022	-0.361	0.049	6	6	4.9%	0.70 (0.63, 0.77)			
14. Aras D. 2022	-4.255	0.104	8	8	4.9%	0.01 (0.01, 0.02)	-		D±
15. Ninni S. 2022	-1.684	0.093	15	17	4.9%	0.19 (0.15, 0.22)	~		But
17. Ree M. 2023	-0.916	0.092	6	6	4.9%	0.40 (0.33, 0.48)	-		
18. Amino M. 2023	-2.519	0.221	3	3	4.8%	0.08 (0.05, 0.12)			
19. Krug D. 2023	-5.011	0.503	3	5	4.1%	0.01 (0.00, 0.02)			
20. Herrera-Siklody C. 2023	-2.297	0.04	20	20	4.9%	0.10 (0.09, 0.11)	w		
21. Miszyczyk M. 2023	-3.621	0.151	10	11	4.9%	0.03 (0.02, 0.04)			
22. Arkles J. 2024	-2.55	0.152	12	14	4.9%	0.08 (0.06, 0.11)	-		
23. Hasková J. 2024	-0.537	0.034	17	17	4.9%	0.58 (0.55, 0.62)	*		
Total (95% CI)			173	191	100.0%	0.10 (0.06, 0.16)	•		
Heterogeneity: $\tau^2 = 1.26$; $\chi^2 = 3680$	0.23, df = 20 ($P < 0$	0.00001);	$I^2 = 99\%$			•	+	 	—
Test for overall effect: $Z = 9.40$ ($P <$	(0.00001)	,-				0.0	0.1 1	1 10	1000
							Favors post SBRT	Favors pre SBRT	

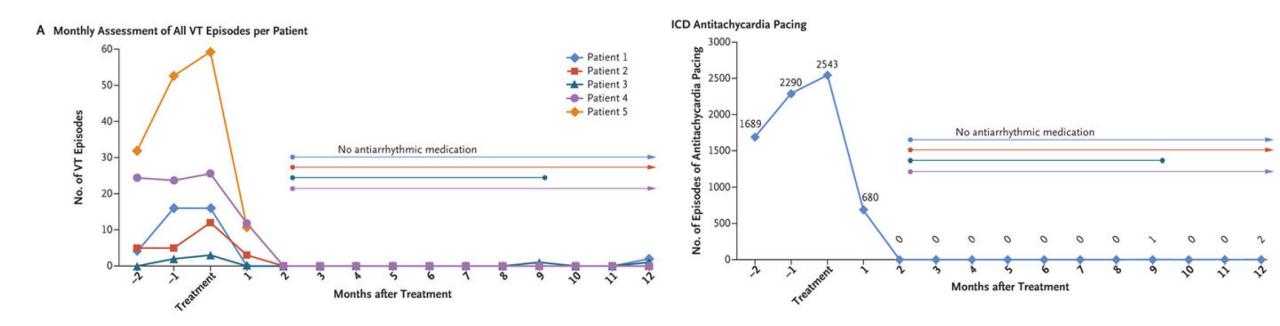
26.9 ATP/months to 3.6 ATP/months; 2 ICD shocks/months to 0.3 ICD shocks/months

Efficacy of STAR Meta-analysis (2017-2024, 21 studies, 191 patients)

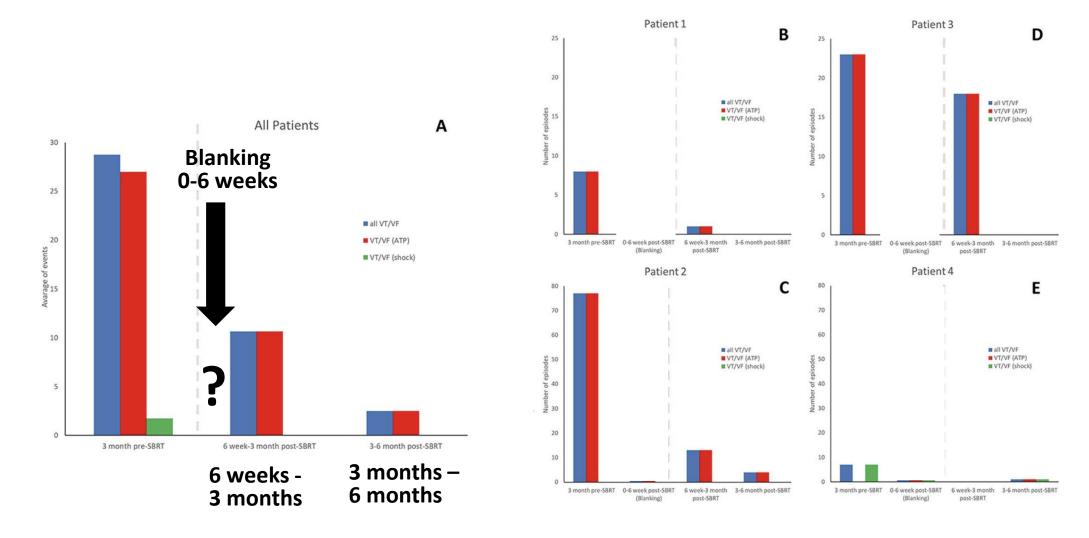


High mortality of 43% over 2 years

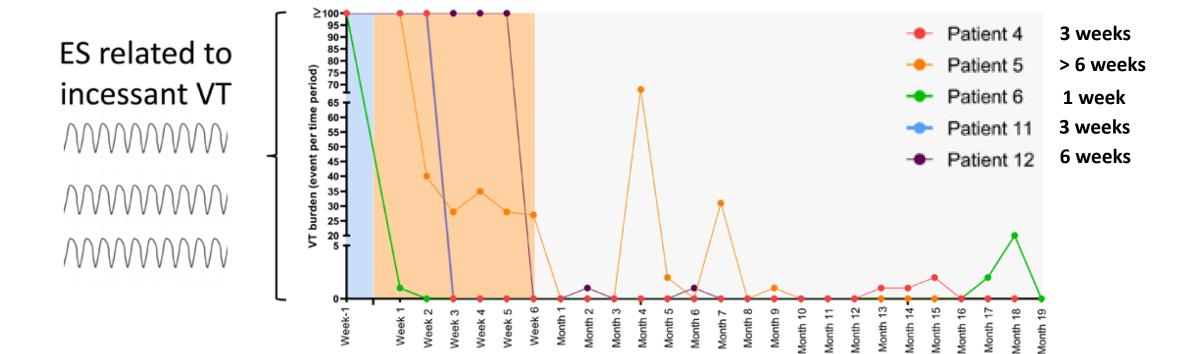
Complete remission uncommon
53% VT recurrence within 6 months post-STAR (after blanking)
30% ICD shocks within 6 months post STAR (after blanking)
20% of survivors underwent re-ablation by 6 months



Regression to mean bias Frequency of events oscillate around the mean

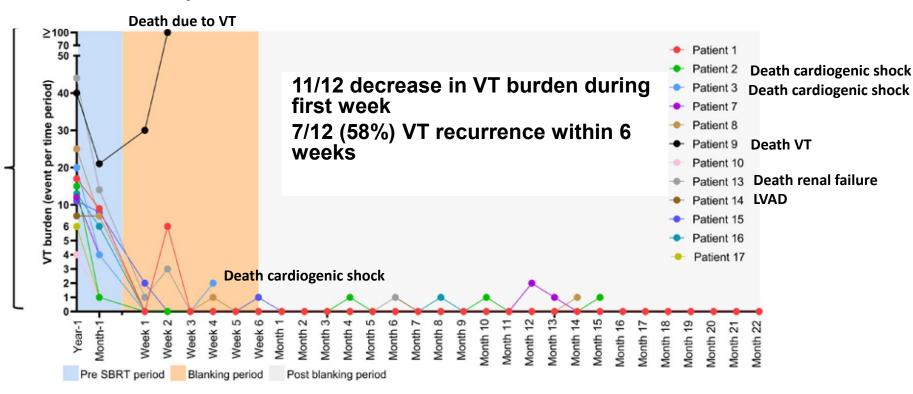

Predictable and acceptable time to effect?

1-2 months



Predictable and acceptable time to effect?

Electrical instability: Electrical storm and incessant VT


Effect only after 1-7 weeks!

4 out of 5 patients decrease in the VT burden during the first 6 weeks 1 out of 5 decrease during the seventh week

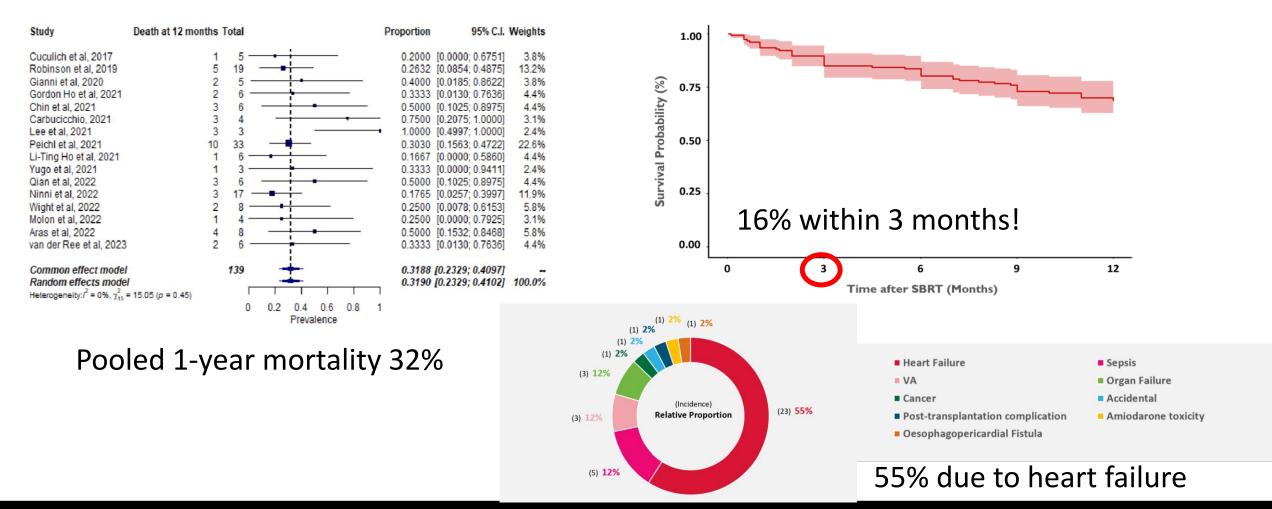
Electrical instability: Electrical storm and incessant VT

ES not related to incessant VT

	Before hospitalization for ES (n=17)	During hospitalization for ES (n=17)	At 6 mo after SBRT (n=15)*
	1	patients in-hospital CA	1
Amiodarone, n (%)	7 (41.2)	17 (100)‡	10 (66.7)
Intravenous	NA	15 (88.2)	NA
Intravenous lidocaine, n (%)	NA	10 (58.8)	NA
Percutaneous sympathetic blockade, n (%)	NA	1 (5.9)§	NA
Intravenous anxiolysis, n (%)	NA	15 (88.2)	NA
Deep sedation and orotracheal intubation, n (%)	NA	3 (17.6)	NA

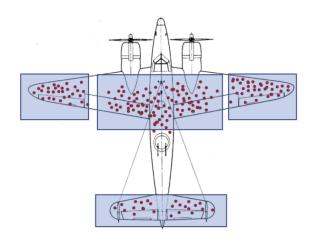
A systematic review and meta-analysis: Trials evaluation STAR for VT 2016-2023 – 10 trials, 82 patients

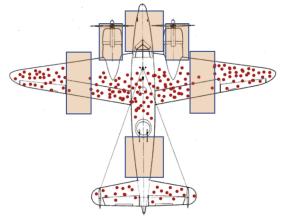
Treatment related ≥3 adverse events in the first 90 days (12.8 weeks)


Study	Cases	Total	Proportion	95% C.I.	
Robinson et al. (2019)	2	19	0.11	[0.01; 0.33] —	<u>*</u>
Gianni et al. (2020)	0	5	0.00	[0.00; 0.52] -	<u>:</u>
Carbucicchio et al. (2021)	0	7	0.00	[0.00; 0.41]	
Molon et al. (2022)	1	6	0.17	[0.00; 0.64] —	<u> </u>
Chang et al. (2022)	0	6	0.00	[0.00; 0.46]	
Krug et al. (2023)	0	5	0.00	[0.00; 0.52] -	
Miszczyk et al. (2023)	1	11	0.09	[0.00; 0.41] —	-
van der Ree et al. (2023)	0	6	0.00	[0.00; 0.46]	
Amino et al. (2023)	1	3	0.33	[0.01; 0.91] —	<u> </u>
Arkles et al. (2023)	3	14	0.21	[0.05; 0.51]	<u> </u>
Random effects model Heterogeneity: Q = 1.72 (p > 0.	9)	82	0.10	[0.04; 0.20]	:
					0.2 0.4 0.6 0.8 1 patients experiencing G3 or worse adverse events lower values indicate better outcomes)

9 treatment related events

- 4/9 grade 5 events
- 6/9 heart failure


A systematic review and pooled-analysis: *One-year* mortality and causes of death after STAR, 16 studies, 157 patients



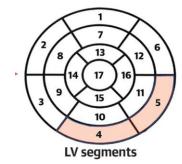
Survivalship bias: What's missing from the data set are the planes that did not return (the patients who did not survive)

Our data if only from returning flights. Here we is a visualization of the places that bullet holes were observed.

And initial guess at how to fix this might be to apply additional armor platting to the parts of the plane with the most holes...

.... However this is where planes that *returned* had bullet holes. The planes we want to protect are the ones that did *not* return, so we should place armor there.

Safety of STAR – The Czech Experience (Unknown) long-term side affects


Safety Cohort (n=36, 32 follow-up >6 months, median follow-up 33.5 months (IQR 18-44.6)

Mortality in 18 (50%): Progression heart failure 12, MI (1), SD (1), pneumonia (2), carcinoma (1) esophageal-pericardial fistula (1)

Progression of mitral valve regurgitation in 8 (25%)

3/8 surgical/catheter interventions (22, 33 and 49 months after STAR)

	Segments	Risk (%)	Irradiated Region		
Irradiated Region	Risk of Sign	nificant Mitral Valve Re	Risk (%)	<i>P</i> Value	
Basal segments	# 1-6	7/19 (37)	Rest of segments	1/13 (8)	0.07
Basal inferior segments	# 3-5	6/12 (50)	Rest of segments	2/20 (10)	0.02
Basal inferolateral segments	# 4-5	6/10 (60)	Rest of segments	2/22 (10)	0.005
	Risk of Signific	cant Mitral Valve Regur Intervention (n =	gitation Requiring Valve = 32)		
Basal segments	Risk of Signific	•		0/13 (0)	0.20
Basal segments Basal inferior segments		Intervention (n =	= 32)	0/13 (0) 0/20 (0)	0.20 0.04

STAR at segment #4 or #5 (10 patients)

- Progression of mitral regurgitation (50%)
- Mitral valve intervention (30%)
- Esophago-pericardial fistula (10%)

Effects of STAR on valve function over time

N=20, NICM 75%, median LVEF before STAR 46% (29%-54%)

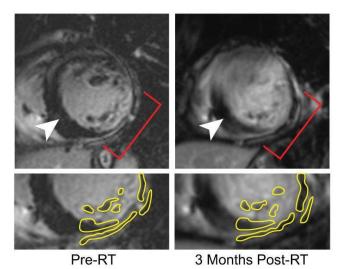
Follow-up echo <6months, 6-18months, >18months

Worsening of valve function in 5/20 (25%)
Aortic valve most frequently, 1/4 AVR
Median time to worsening 1.1 year
Higher mean dose for the valve

	Wor	sening	No worsening		
	Prevalence (%)	Mean dose (Gy)	Prevalence (%)	Mean dose (Gy)	
Aortic valve	4 (20)	16.8 (12.7–19.8)	16 (80)	7.2 (1.5–7.2)	
Stenosis	2 (50)				
Regurgitation	2 (50)				
Mitral valve	1 (5)	5.6 (n.a.)	19 (95)	7.5 (3.8–10.3)	
Stenosis	0 (0)				
Regurgitation	1 (100)				
Tricuspid valve	1 (5)	1.9 (n.a.)	19 (95)	6.7 (2.2–12.6)	
Stenosis	0 (0)				
Regurgitation	1 (100)				

"Fibrosis cannot explain the rapidity and magnitude of the effect"

ARTICLE



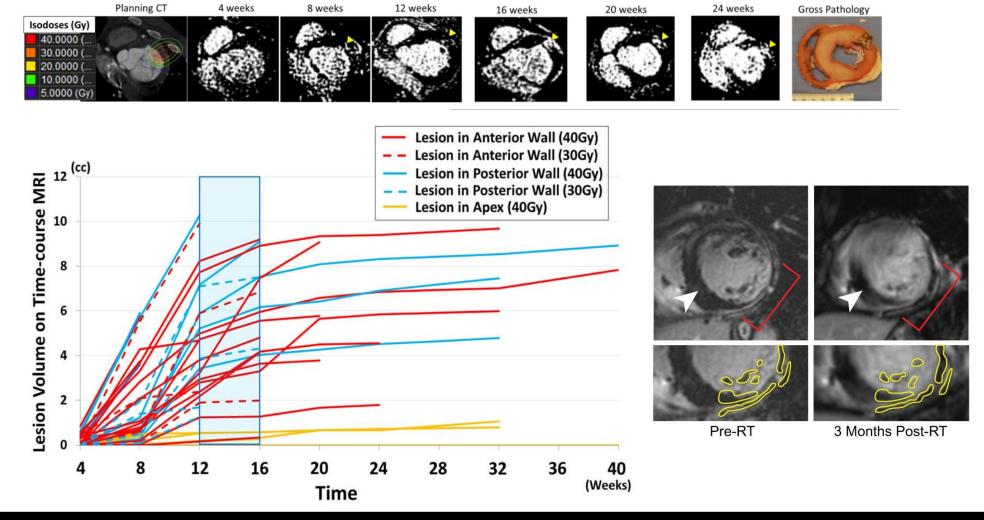
https://doi.org/10.1038/s41467-021-25730-0

Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis

David M. Zhang ^{1,2}, Rachita Navara ^{1,2}, Tiankai Yin ², Jeffrey Szymanski³, Uri Goldsztejn ^{2,4}, Camryn Kenkel^{2,4}, Adam Lang⁵, Cedric Mpoy³, Catherine E. Lipovsky^{2,6}, Yun Qiao^{2,4}, Stephanie Hicks², Gang Li^{2,4}, Kaitlin M. S. Moore^{1,2}, Carmen Bergom ^{1,3}, Buck E. Rogers³, Clifford G. Robinson^{1,2,3}, Phillip S. Cuculich^{1,2,3}, Julie K. Schwarz ^{1,3} & Stacey L. Rentschler ^{1,2,4,6}

Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of

12 weeks


(Fig. 1e). Representative contrast-enhanced magnetic resonance imaging (MRI) scans of Patient E revealed no change in gadolinium enhancement and preserved myocardial tissue between baseline and at 3-month follow-up in the RT-targeted region (Fig. 1f), and there was no evidence of increased fibrosis on MRI post-RT in any patient. These clinical findings are consistent with previous preclinical studies that required doses in excess of 40 Gy to produce scar^{16–22}. Collectively, these data strongly suggest that fibrosis alone cannot explain the clinical timeline and magnitude of reduced VT burden observed after RT.

Time-course of lesion formation assessed by CMR and Histology

Proton beam 30/40Gy

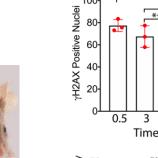
Whole heart 25 Gy irradiation enhanced electrical conduction

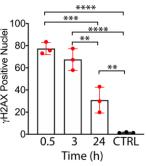
ARTICLE

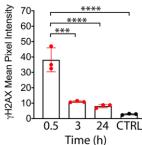
https://doi.org/10.1038/s41467-021-25730-0

OPEN

Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis


Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.




Whole heart 25 Gy irradiation enhanced electrical conduction

30min, 3h, 24h

yH2AX = Marker for double-stranded DNA breaks

The adult mice heart rapidly recovers from radiation induced DNA damage

6 weeks

42 weeks

ECG Optical mapping Histology **Immunostaining, Western blots**

ECG

Immunostaining, Western blots

QRS shortening

Other ECG parameters unchanged

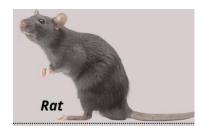
Increased CV

*Increased CV in infarct BZ

APD and ERP unchanged

Increase in Na, 1.5 and Cx 43

QRS shortening

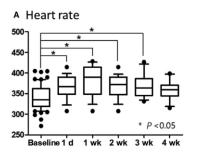

Increase in Na, 1.5 and Cx 43

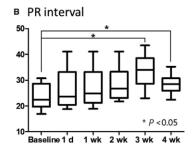
No necrosis, no apoptosis, no fibrosis, no structural changes, after 6 and 42 weeks

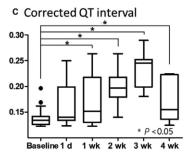
Mouse

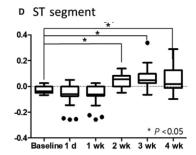
Whole heart irradiation leads to extra- and intracellular edema

20, 25, 30, 40, 50 Gy


ECG, Echo


Histology

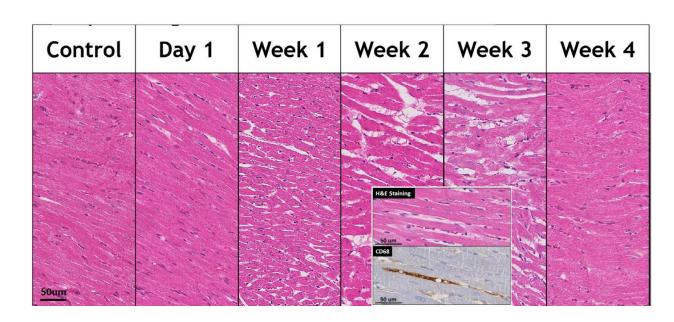

Immunohistochemical analysis (anti - C4d, CD3, CD 34, CD 68, anti-Des)
Immunofluorecense (anti Cx43, anti-alpha-sarcomeric actin, DAPI)


TUNEL assay (apoptosis)

1 day, 1, 2, 3, 4 weeks

- QT prolongation
- **ST elevation** (after 2 weeks, decrease at 4 weeks)

Whole heart irradiation leads to extra- and intracellular edema



20, 25, 30, 40, 50 Gy

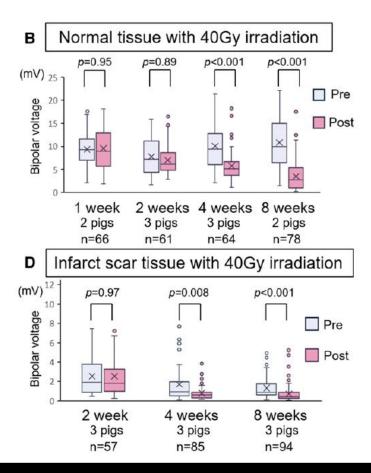
1 day, 1, 2, 3, 4 weeks

Interstitial edema, intracellular swelling Mitochondrial damage Macrophage/mononuclear interstitial infiltration

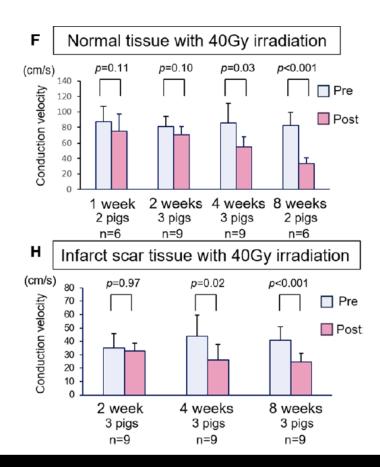
Decreased Cx43 expression at 2-3 weeks

Temporary inflammatory response (peak at 3 weeks)

No impact on cardiac function, no impact on intraventricular conduction No apoptosis, no necrosis

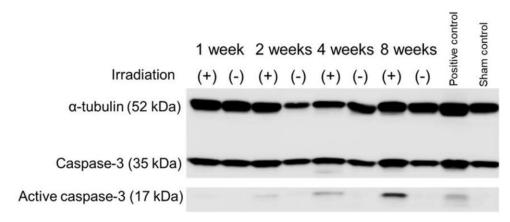


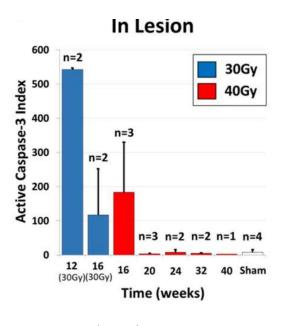
Early effects of 40 Gy proton beam area irradiation in pigs

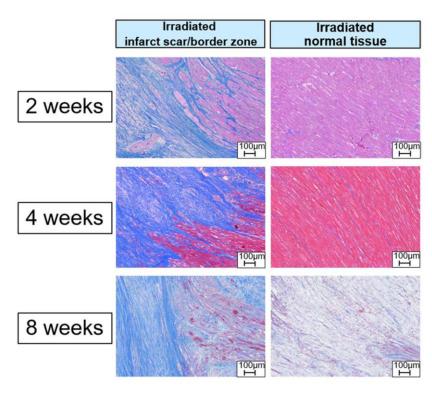

Normal heart Infarcted heart Reperfusion model

1, 2, 4, 8 weeks

Bipolar voltage mapping

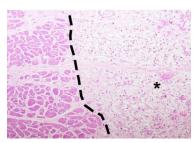

Conduction velocity





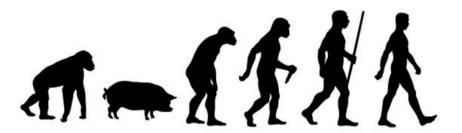
Early effects of 40 Gy proton beam area irradiation Apoptose and histological changes

Normal heart Infarcted heart Reperfusion model



Suzuki et al CircAE 2020;13

Patient with a non-ischemic cardiomyopathy Irradiation lateral wall Death 12 weeks after STAR


Conclusions: Too early for prime time!

No complete elimination of the target

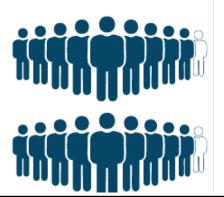
Delayed time to effect

Delayed adverse events and unclear impact on heart failure

Necessary work needs to be done selecting the best animal model!

Patient selection, ventricular tachycardia substrate delineation, and data transfer for stereotactic arrhythmia radioablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society

Writing group members: Katja Zeppenfeld^{1*} (Chairperson), Robert Rademaker ¹ (Document coordinator), Amin Al-Ahmad ², Corrado Carbucicchio ³, Christian De Chillou ⁴, Jakub Cvek⁵, Micaela Ebert ⁶, Gordon Ho ⁷, Josef Kautzner ⁸, Pier Lambiase ⁹, Jose Luis Merino ¹⁰, Michael Lloyd ¹¹, Satish Misra¹², Etienne Pruvot ¹³, John Sapp ¹⁴, Luis Schiappacasse ¹⁵, Marek Sramko⁸, William G. Stevenson ¹⁶, and Paul C. Zei¹⁷


Patient selection, monitoring, and safety

Strength of evidence

Advised TO DO

It is advised to consider STAR in the context of an approved investigational trial for patients with VT refractory to AAD (due to recurrence, intolerance, or contraindications) and RFCA performed in an expert centre.

It is appropriate to discuss all patients considered for STAR with a multi-disciplinary team, including an electrophysiologist highly experienced in the invasive treatment of VA, a radiation oncologist, a heart failure specialist, a specialist in cardiac imaging, and a cardiac surgeon (for treatment alternatives and options in case of deterioration of cardiac function).

